
6. THE THEORY OF APERTURE AERIALS

In  aperture  aerials  electromagnetic  waves  are  emitted  trough
the aperture. It separates the internal volume of the aperture aerial from
the external space and presents a plane or a surface, which is transparent
for  electromagnetic  waves.  The  process  of  electromagnetic  waves
formation is carried out by a weakly directional field source, which is
placed in the internal volume of the aperture aerial and converts energy
of  high  frequency  currents  into  the  electromagnetic  waves  energy.
Formation of a field structure in the environmental space is completely
defined  by  aperture  parameters  and  distribution  of  tangential
components  of  field  in  the  aperture.  As  DD  of  aperture  aerials  as
a matter of fact is created due to diffraction of electromagnetic waves on
an aperture, such aerials sometimes are called diffraction antennas.

Irrespective of the constructive realization of the aperture aerial,
it's radiation field is defined only by the aperture properties, that allows
to  examine  such  properties  from  common  positions,  namely,  from
position  of  influence  of  the  tangential  components'  distribution  in
the aperture on the radiation field. Thus the aperture of the aerial can be
analyzed as a system with continuous distribution of field sources, that
enables to represent  DC of aperture as the product  of  the elementary
radiator DC and the array factor.

6.1. Analysis of a radiation field of aperture aerials

At  approximate  method  of  analysis  of  a  radiation  field
the  aperture  is  considered  as  a  set  of  the  Huygens  elements.  Such
approach allows to determine the radiation field from the aperture as
the sum of  elementary  radiators'  fields.  Therewith  the  distribution  of
tangential components in an aperture plane is considered given. Thus, in
this method, here in after named the aperture method, the radiation field
of  the  aerial  system  with  continuous  distribution  of  field  sources  is
considered.

In Fig. 6.1 the flat aperture S  corresponds to the xoy  plane of
rectangular coordinate system. Let us choose the observation point M
in     a far-field, with coordinates in spherical system    and    ,r .

95



SE  is  the tangential field  component  in  the  aperture  plane.  Its
module  and  

Fig. 6.1

phase depend on coordinates of aperture  S . The elementary radiator,
allocated  in  an  aperture  point  A ,  in  the  observation  point  creates
the field with the intensity

                                          Aіkrkr
e

S e,f
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dSE
іkrEd 

 
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
 ,             (6.1)

where  dS  is  the  area  of  the  Huygens  element;   ,f e  is  DC of
the Huygens element. 

As  point  M  is  in  the  far-field,  distance  from point  A  to
the  observation  point  can  be  expressed  through  the  distance  from
the coordinate origin and the path-length difference rOB  :
                                                      rrrA  .        (6.2)

In Fig. 6.1 point B  can be found as crossing point of direction
r  with  a  perpendicular,  dropped  from  point  A .  The  field  of
elementary radiators set, forming aperture S , is

                                                         
S

EdE 
.         (6.3)

Substituting value of the field intensity of an elementary radiator
(6.1) in formula (6.3) and taking into account expression (6.2)
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 The path-length difference r  is determined by coordinates of
the observation point M and by coordinates of point  A (the Huygens
element). If to use the scalar product of vectors 

                                                   AOrr


0 ,                                (6.5)

where  0r


 is  the  unit  vector,  which  coincides  with  the  direction  of

radius  vector  r


;  AO


 is  the  vector,  which  is  directed  from  the

coordinate origin to point A  and which module is equal to length OA
.

In rectangular coordinate system vector  0r


 is  determined by
the equation 
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and vector AO

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 ,

where y  and  x  are coordinates of point A .
From formula (6.5) the path-length difference is found:

                                   sinsinycossinxr  .  (6.6)
When it  is  convenient  to  use  the  polar  coordinate  system in

an aperture plane, point A  is defined by the radius OA  and angle

S . Connection between polar and rectangular coordinates is expressed

by formulas: Scosx   and Ssiny  . 
Substituting these expressions in formula (6.6), we can receive

the path-length difference as functions of coordinates in spherical and
polar systems:
                                            Scossinr   .                  (6.7)

Taking into account expression (6.6),  formula (6.4) is  written
down as
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(6.8)
where 2121 bybіkr    axa  ,dxdydS  .
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Let us find the aperture DF in the direction of axis z. In this case
the  path-length  difference  turns  to  zero   0r .  Power,  which  is
radiated through the aperture

                                                 

S

SdSПP , 

where  SП  is the power density in the aperture plane (integration will
be carried out over the aperture area).

Assuming that the wave resistance of the aperture is  equal  to

aW , we obtain:
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.              (6.9)

Thus,  as  it  follows  from formulas  (3.21)  and (3.22),  the  DC
value for the Huygens elements in the z  direction will be aWW1 .
Therefore  the  maximal  value  of  the  field  intensity,  radiated  by
the aperture in the specified direction, from formula (6.4) is
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Substituting expressions (6.9)  and (6.10)  in  formula (2.27)  at
  1,F  the  formula  for  calculation  of  the  aperture  DF  can  be

found:
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The  effective  area  is  determined  by  comparing  expressions
(6.11) and  (2.37)
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As  it  follows  from  expression  (6.12)  the  effective  area  at
radiation  in  the  z  direction  depends  on  amplitude  and  phase
distributions of tangential field components in the aperture area.
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At  WWa   the  expression  for  the  effective  area  can  be
simplified:
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.  (6.13)

Formula (6.13) takes into account only the form of distribution
of tangential field components in the aperture area.

6.2. The rectangular aperture with the uniform amplitude-phase
distribution of tangential components

Let us consider the rectangular aperture with sizes  a  and  b
(Fig. 6.2), in which tangential components of field  intensity  vectors  are

Fig. 6.2

equally directed at every point, and their amplitudes and phases do not
depend on aperture coordinates.

Then
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and expression (6.8) takes the form
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(6. 14)
Substituting DC of the Huygens element (3.21) and 2π  in

(6.14), we can find the field intensity in plane yoz  (plane E ):
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After integration
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By analogy the field distribution in plane H  (plane xoz ) can
be found: 
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 As is seen from formulas (6.15) and (6.16), the aperture DC is
the product of the Huygens element DC and the array factor, which is
the function uusin , where u  is the generalized angular argument. It
is obvious, that Esinkb.u 50 .

The  obtained  expression  for  the  array  factor  is  identical  to
the array factor of the equal amplitude excitation and the equally spaced
linear  cophased  array  at  a  great  number  of  radiators  and  distance
between them, which satisfy the condition d . Therefore the results
of  the  following  analysis  within  reasonable  limits  can  be  applied  to
the aerial array.

As is evident from (6.15) and (6.16), the rectangular aperture with
the  uniform  amplitude-phase  distribution  of  tangential  components
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creates the maximal value of the field intensity in the normal direction
(along axis z). In this case 0 HE   and
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At  changing  coordinate  angles  E  and  H  the  directional
characteristic of the Huygens element varies slower in comparison with
function uusin . Therefore the directional properties of the rectangular
aperture are defined by function uusin , which is plotted in Fig. 6.3.

                                                   Fig. 6.3

This  function  reaches  its  maximal  value  at  0u ,  takes  zero
values  at  πpu  ,  where  321  ,,p .  From  the  conditions

πpθsinkb. E
p 050  and pπθsinka. H

p 050  the  directions  of  zero

radiation can be found:

                 .
a

p
sin  ;

b

p
sin H

p
E

p





  00

For the aperture of relatively large dimensions at 1p

                          .
a

2  ;
b

HE 



  1151152 00                  (6.17)

          The half-power beamwidth 
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It  follows from expressions (6.17)  and (6.18),  that  the  beamwidth in
a considered plane is determined by the aperture size in the same plane
and does not depend on the size of the aperture in other plane.
           Directions  of  side lobes  maximums are  determined from
the function uusin  extremums, which are at

                                    mpmp utgu  .
Solution of this equation for the first lobe maximum gives value

of the generalized angular argument π.um 402911  .
             Let us find the aperture effective area by formula (6.13). As

tS EE  , then

                                                   SSe  ,                                   (6.19)
i.e.,  the  effective  area  at  the  uniform  amplitude  and  the  phase
distribution of tangential field components in the aperture plane is equal
to the geometrical area.

The area utilization factor, as it follows from (2.38), is equal to
unity and DF is determined from expression (2.37)

                                                  SD
2

4




 .            (6.20)

Formulas  (6.19)  and  (6.20)  are  obtained  assuming  that
WWa  .

6.3. Radiation from the circular aperture with cophased and
uniform distribution of tangential components

The circular aperture is used in conical horn, parabolic, some
lens and other aerials.  In each point of the aperture with the uniform
field distribution the tangential components of the electric intensity and
magnetic intensity are characterized by the same amplitude and the same
phase.

In Fig. 6.4 the circular aperture of radius  a  is  presented.  In
the  polar  system  position  of  an  aperture  element  is  described  by
coordinates: radius   and angle S . Its area 

                                                   SdddS  .            (6.21)
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Substituting DC of the aperture element (3.23), the path-length
difference  (6.7)  and   the  element   area   (6.21)   in   expression   (6.4),

                                                  Fig. 6.4
 the radiation field intensity of the circular aperture at constEE tS 

can be received:
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(6.22)
The  received  integral  can  be  expressed  through  Bessel’s

function 
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where  uJ1  is Bessel’s function of the first order from the generalized
angular coordinate: sinkau  .

The  directional  characteristic,  as  well  as  for  the  rectangular
aperture, is the product of two factors. At rather large apertures the array
factor is
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Graphic representation of dependence (6.23) by its form is close
to the curve, represented in Fig. 6.3. The beamwidth on the zero level
from expression (6.23) is equal to

                                                    
a2

1402 0


  .

The half-power beamwidth 

                                                    
a

.. 2
5582 50


  .

The  effective  area  as  well  as  in  the  case  of  the  rectangular
aperture with the uniform distribution is equal to the geometrical area.

6.4. The aperture with non-uniform amplitude distribution

Let us consider the nonuniform distribution, which is frequently
met in the aerial engineering, namely, the cosine amplitude distribution.
The cosine amplitude distribution of the field intensity in the plane of
the rectangular  aperture  (see  Fig.  6.2)  can be reduced to  the  case  of
radiation from the open end of a rectangular wave guide.

Let us assume, that the phase of the field intensity in all points
of the aperture is the same. The amplitude of the field intensity along
the  directions,  parallel  to  axis  oy ,  does  not  change,  and  along
the directions parallel to axis ox, obeys to the dependence
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where mE  is the electric field intensity in the aperture points, which are
on axis oy .

Let  us  substitute  values  yE  in  expression  (6.8).  DC  of
the aperture element is described by formula (3.22).

As  a  result  of  integration  in  borders  of  a  variable  x  from
2a  to 2a , variable y  from 2b  to 2b  we can receive the

expression  for  the  field  intensity  in  plane  H, which  differs  from
expression (6.16):
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      In  plane  E ,  which  coincides  with  plane  yoz  of  the
rectangular coordinate system (see Fig. 6.2), taking into account that the
distribution of tangential  components of the field intensity along axis
oy  is uniform, DC does not differ from expression (6.15).

In plane H  normalized DC is determined by the formula
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The array  factor  has  significally  changed in  comparison  with
the  corresponding  array  factor  of  the  aperture  with  the  uniform
distribution (6.16). The factor takes the first zero value at

                                                πsin
ka H

2

3

2 0  .

Hence  at  rather  big  aperture  sizes  the  beamwidth  on  zero
radiation level in plane H  is

                                                  
a

H 
 1722 0 .            (6.25)

The half-power beamwidth is determined by the expression

                                                  
a

H
.


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Comparing  expressions  (6.25)  and  (6.26)  with  expressions
(6.17)  and  (6.18),  one  can  note,  that  the  DC major  lobe  in  case  of
the  cosine  amplitude  distribution  is  wider  in  comparison  with
the  uniform  distribution.  At  the  uniform  distribution  of  the  field  in
the  aperture  the  given  beamwidth  can  be  received  with  the  smaller
aperture  sizes.  Thus,  owing  to  non-uniformity  of  excitation  of
the aperture, its geometrical area is used uneffectively. Aperture sites
with small intensity values render small influence on the DD formation
that is equivalent to reduction of the aperture area.
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As  the  major  lobe  widens,  the  amplitude  distribution  falling
down to the  aperture  edges,  the  intensity  of  side  lobes  increases.  At
the cosine distribution of tangential components the level of the first side
lobe is 231  dB, whereas at the uniform distribution 2131 .

dB.  Examining other amplitude distributions,  for  example,  cosine-on-
pedestal,  the following regularity can be noted: the faster    the field
intensity falls down to the aperture edges, the wider the major lobe and
the more considerable the level of side lobes falls. Therefore apertures
with  the  non-uniform amplitude  distribution,  which  is  chosen  out  of
conditions of reduction of side lobes intensity up to a required level, are
widely used in practice.

Data from Tab. 6.1 confirm the statement about the dependence
of the DD beamwidth and the side lobes level  upon the character  of
the amplitude distribution of intensity tangential components. 

In Tab. 6.1, the function 

                                                        sin
ka

u
2

  

is used as the generalized angular argument.  
The  influence  of  velocity of  the  distribution  reduction  to

the  aperture  edges  is  well  illustrated  by  the  cosine  distribution  in
the first,  the second and the third degrees.  The higher  the degree is,
the  faster  the  amplitude  decreases,  the  wider  DC  is  and  the  lower
the level of the first side lobe is. In this case the area utilization factor
also decreases.

Let  us  find  by  formula  (6.13)  the  aperture  effective  area  at
the cosine amplitude distribution (6.24)
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                                                                                                                                       Table 6.1
Amplitude  dist-
ribution,  xf

Array factor,
 uF

Beamwidth First side
lobe level
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tion factor
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